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SURVEY

AN OPERATOR THEORETIC APPROACH TO ROBUST CONTROL OF
INFINITE DIMENSIONAL SYSTEMS

HITAY ÖZBAY1

Abstract. The purpose of this paper is to give an overview of the skew Toeplitz approach

to H∞ control of a class of infinite dimensional systems. Numerical steps involved in the

computations of optimal and suboptimal controllers are demonstrated with different examples,

including flexible beam models and systems with time delays.
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1. Introduction

This paper provides an overview of the so-called skew Toeplitz approach to H∞ control of
a class of infinite dimensional systems, [45]. The author has given invited presentations on
this topic at various scientific meetings, such as 17th International Symposium on Mathematical
Theory of Networks and Systems (MTNS 2006) Kyoto, Japan, and 2nd International Conference
on Control and Optimization with Industrial Applications (COIA 2008) Baku, Azerbaijan. The
present paper is a brief summary of these presentations.

It is now well-known that robust controllers, under the presence of unstructured L∞-norm
bounded perturbations in the plant transfer matrix, can be obtained from an H∞ optimization,
[168]. Many different approaches have been developed for H∞ control of finite dimensional
systems, and computational tools are now widely available, [32, 34, 47, 54, 56, 84], [94, 124,
137, 155, 172, 173]. Robust control under `1 optimality, and other types of uncertainty, are also
studied widely, see [9, 12, 28, 148] and their references. For time delay systems (an important
class of infinite dimensional systems), H∞ controllers started to appear in the literature in
the mid 1980s, [41, 46, 174]. Over the last 20 years there has been significant progress in the
extension of these first results to larger classes of infinite dimensional systems, see e.g. [5, 24,
25, 31, 43, 53, 57, 58, 71, 75, 78, 86, 93], [107, 111, 112, 118, 119, 129, 130, 135, 140, 144, 151].
One of the methods used in the computation of H∞ controllers for infinite dimensional systems
is the “skew Toeplitz” approach, [45]. The importance of skew Toeplitz operators in H∞ control
has been noticed by Foias, Tannenbaum and their collaborators, and this term first appears in
[11]. In this approach H∞ optimal and suboptimal controllers are directly computed without
approximating the plant.

For infinite dimensional systems robust controllers can also be obtained by approximating the
plant and then using standard techniques developed for the control of finite dimensional systems,
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by keeping track of the original approximation error, see e.g. [6, 23, 76, 87, 88, 104, 105, 120, 133]
and their references. See [22] for an early review of H∞ control of distributed parameter systems
in general, [154] for state-space approach to H∞ control of such systems, and [100, 157] for
reviews of state-space and operator theoretic approaches to H∞ control of time delay systems.
For time delay systems, and some other classes of distributed parameter systems, H∞ controllers
can also be derived from a game theoretic approach, [10, 139]. For the most recent results on
H∞ control of systems with input-output delays, see [98, 171] and their references. Repetitive
control design, [68], under certain performance and robustness conditions, can be posed as a
robust control problem for systems with time delays, [63, 123, 142, 158]. Sampled-data controller
design, with certain types of optimality conditions result in anH∞ control problem for time delay
systems, see [8, 20, 67, 160] for further references. Robust stability of time delay systems (within,
and outside, the framework ofH∞ control) is widely studied, [19, 33, 49, 50, 59, 64, 70, 74, 81, 83],
[85, 89, 109, 110, 102, 121, 122, 146, 147, 153]. Several issues related to robust control of fractional
delay systems has been considered in [14]. Stability robustness against small time delays have
been considered for various types of plants, see e.g. [17, 90, 97, 103] and their references.
Flexible structure models which include internal time delays, are considered in [65, 66]. For
spatially invariant distributed parameter systems, [7], H∞ optimal controllers are obtained from
a parameterized family of finite dimensional problems; see also [27]. Robust control of infinite
dimensional systems is also covered in the book [26].

In Section 2 some key results from operator theory are reviewed and their link with the H∞
control are shown. In Section 3 numerical computations of optimal and suboptimal controllers
are demonstrated based on the formulae derived in [60, 149]. Plants considered in Section 3 are
systems with time delays, [39, 61], and an infinite dimensional flexible beam model, [87, 88].

2. H∞ Control problems

In this section some important results from operator theory are reviewed and a short descrip-
tion of the of the skew Toeplitz approach is given to illustrate the technique used in finding
optimal and suboptimal H∞ controllers. An excellent background material can be found in a
recently published book [161].

The standard feedback system F(C,P ) is shown in Figure 1, where C is the controller to be
designed and P is the plant to be controlled. The systems P and C are assumed to be linear
operators on appropriately defined function (signal) spaces. For simplicity of the presentation,
all systems considered are single input single output unless otherwise stated.
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Figure 1. Feedback system F(C,P )

We say that a linear time invariant system whose input output behavior is characterized by
the transfer function H(s) is said to be stable if H ∈ H∞ (see [26, 139, 175] for a discussion on
the transfer functions of infinite dimensional systems, here we assume that the transfer function
is the “quotient of the Laplace transform of the output and input, with initial condition zero”).
The feedback system F(C,P ) is stable if and only if S = (1 + PC)−1, PS and CS are in H∞.
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Here S is the sensitivity function. The set of all controllers stabilizing this feedback system for
a given P is denoted by C(P ).

Most important features of the H∞ control problems are captured by the weighted sensitivity
minimization problem, which is to find

γo = inf
C∈C(P )

‖W (1 + PC)−1‖∞ (1)

and the corresponding optimal controller Co ∈ C(P ), for a given plant P and a weight W ; typi-
cally W,W−1 ∈ H∞. There are several approaches to this problem depending on the structure
of the problem data.

First, let us assume that W is infinite dimensional (an irrational transfer function) and P is
finite dimensional (a rational transfer function). We can solve this problem using Nevanlinna-
Pick interpolation, as follows. For simplicity of the exposition assume that z1, . . . , znz are the
zeros and p1, . . . , pnp are the poles of P in C+, and P has no poles or zeros on the imaginary
axis. In this case, C ∈ C(P ) is equivalent to having the sensitivity function S = (1 + PC)−1

in H∞, with S(zi) = 1 and S(pj) = 0. Then, γo is the smallest γ > 0 such that there exists a
function F ∈ H∞ such that

‖F‖∞ ≤ 1 and F (zi) = γ−1W (zi), F (pj) = 0

for i = 1, . . . , nz, j = 1, . . . , np. This is the Nevanlinna-Pick interpolation problem, and can be
solved from the problem data W and P , see [44, 45, 82, 170]. Once γo and the corresponding
optimal F is computed, the resulting controller is C = (γ−1W − F )/PF . Note that in this
case the problem solution depends on W (zi), and W (s) can be irrational. In summary, when
the plant is finite dimensional and the weight is infinite dimensional, the weighted sensitivity
minimization problem can be solved using Nevanlinna-Pick interpolation.

Clearly, we cannot use this approach when the plant P is infinite dimensional (with infinitely
many C+ zeros or poles). For such plants we will assume that W is finite dimensional and use the
characterization of C(P ) given below. First, assume that P can be written as P (s) = N(s)/D(s)
with N,D ∈ H∞ such that there exist X, Y ∈ H∞ satisfying

X(s)N(s) + Y (s)D(s) = 1.

Then the set of all controllers stabilizing F(C, P ) is (see e.g. [3, 138, 165] and their references)

C(P ) =
{

X + DQ

Y −NQ
: Q ∈ H∞, Y −NQ 6= 0

}
.

Let us now assume that the plant has finitely many unstable modes, i.e. D(s) can be taken as
a rational function. In this case X(s) should be chosen in such a way that

Y (s) =
1−X(s)N(s)

D(s)
∈ H∞.

Clearly, using Lagrange interpolation one can find a rational X(s) satisfying the above require-
ment. Note also that stabilizing controllers are in the form

C =
D(X + DQ)

1−N(X + DQ)
(2)

and they can be implemented as shown in Figure 2.
In particular, when the plant is stable we can choose N = P , D = 1 and X = 0. This leads

to
γo = inf

Q∈H∞
‖W (1− PQ)‖∞.
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Figure 2. Stabilizing Controller

The next crucial step is to perform inner outer factorization of the plant:

P = MnNo where Mn is inner and No is outer.

Defining Q1 = WNoQ (we assume that WNo is invertible in H∞; otherwise, see the discussion
in [40, 48] on the absorption of the outer factor), we have

γo = inf
Q1∈H∞

‖W −MnQ1‖∞. (3)

The problem (3) can be put into the framework of the Nehari problem, [108], and that gives

γo = ‖Γ‖,
where Γ is the Hankel operator whose symbol is M∗

nW ∈ L∞. We will assume that the norm
is achieved on the discrete spectrum, i.e., ‖Γ‖ > ‖Γ‖e, the essential norm (see [45, 169] for the
computation of the essential norm). In this case γo and the corresponding optimal Q1 ∈ H∞,
and hence the optimal controller C ∈ C(P ), can be obtained by computing the largest singular
value, and the corresponding singular vector of Γ, see also [2] for the characterization of all
suboptimal solutions of this problem. For more details see [45].

The problem (3) can also be solved using Sarason’s Theorem, [134], or the Commutant Lifting
Theorem, [44, 143], as follows. Let us map the right half plane, C+, to the unit disc, D, via the
conformal map z = ϕ(s) = s−1

s+1 , s = ϕ−1(z) = 1+z
1−z . Define functions w(z) = W (ϕ−1(z)) and

mn(z) = Mn(ϕ−1(z)). For the inner function m := mn define H(m) = H2(D)ªmH2(D). When
m is rational (finite Blaschke product), the space H(m) is finite dimensional, otherwise it is infi-
nite dimensional. Let S be the unit shift operator on `2, i.e. it can be seen as the multiplication
by z on H2(D). Then the compressed shift operator T is defined as T = ΠH(m)S|H(m), where
ΠH(m) denotes the orthogonal projection onto H(m). Now the solution of (3) is

γo = ‖w(T)‖.
Since w(z) is rational, it can be written as w(z) = b(z)/a(z). Under the assumption γo >

‖w(T)‖e, (the norm is strictly greater than the essential norm), γo is the largest γ for which
there exists a non-zero f ∈ H(m) such that

0 =
(
b(T)∗b(T)− γ2a(T)∗a(T)

)
f =: Aγf . (4)

The operator Aγ is called a skew Toeplitz operator, and γo is the largest γ which makes Aγ

singular; the optimal Q1 ∈ H∞, and hence the optimal controller C ∈ C(P ), are determined
from the corresponding f ∈ H(m) as

w −mnqopt
1 =

b(T)f
a(T)f

. (5)

A closer examination of (4) leads to a finite set of linear equations for the existence of a non-zero
f ∈ H(m), even when H(m) is infinite dimensional. This set of linear equations determine γo
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and the corresponding f . Then the optimal controller is obtained from (5) using this f . For
complete details and further references see [45].

The weighted sensitivity minimization is known as a one-block H∞ control problem. An
extension of this problem, which also takes into account robust stability of the feedback system,
[32], is the mixed sensitivity optimization: find

γo = inf
C∈C(P )

∥∥∥∥
[

W1(1 + PC)−1

W2PC(1 + PC)−1

]∥∥∥∥
∞

(6)

and the corresponding optimal controller. Again, using the parameterization (2), we transform
the problem (6) into a problem of finding

γo = inf
Q∈H∞

∥∥∥∥
[

W1(1−N(X + DQ))
W2N(X + DQ)

]∥∥∥∥
∞

and the corresponding optimal Q ∈ H∞. After a series of inner-outer factorizations, [47], the
above problem is further reduced to finding smallest γ such that there exists Q1 ∈ H∞ satisfying

∥∥∥∥
[

W −MQ1

G

]∥∥∥∥
∞
≤ γ label2bl1 (7)

where W,G,M,Q1 are determined from the problem data W1,W2, N, D. In particular Q1 is
determined from Q by an invertible relation, M is inner infinite dimensional, and G is finite
dimensional. If the plant is stable N = P and D = 1, then W is finite dimensional as well.
Otherwise, it has a special structure W = Wo +M1Ŵo where Wo, Ŵo are finite dimensional and
M1 is the infinite dimensional part of M , i.e., M = M1M2 with M2 being finite dimensional
(assuming that the plant has finitely many unstable modes). Next step is to do a spectral
factorization:

F ∗
γ Fγ = γ2 −G∗G.

That transforms (??) into a problem of finding smallest γ such that

‖WF−1
γ −MQ2‖∞ ≤ 1, (8)

where Q2 = Q1F
−1
γ . Clearly, now the problem (8) is in the form (3), and the approach outlined

earlier is applicable. The problem (??) is a two-block H∞ control problem, and as we have seen
above, it can be reduced to a one-block problem by a spectral factorization.

One step extension of the two-block problem is the four-block problem. That also can be
reduced to a one-block problem by a series of spectral factorizations, see e.g. [47]. The key
observation we make in this context is that when the weights are finite dimensional, and the
inner-outer factorizations of the plant have already been made (see below for examples), we only
need to do spectral factorizations for finite dimensional systems, see [45, 80] for further details.
In general, there are several technical difficulties in performing spectral factorizations for infinite
dimensional systems, [159].

The problem of robust stabilization in the gap metric can be posed as a special case of
the mixed sensitivity minimization, (6), with special weights W1 and W2. This problem has
been studied for various classes of infinite dimensional systems, see e.g. [35, 53, 150] and their
references. The uncertainty model in this case is coprime factor perturbations. Briefly, if the
uncertain plant is given as

P∆ =
N∆

D∆
=

N + ∆N

D + ∆D
, N, D,∆N , ∆D ∈ H∞
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with

N∗N + D∗D = 1 ‖
[

∆N

∆D

]
‖∞ < δ

then a controller C ∈ C(P ), where P = N/D, is also in C(P∆) if and only if it satisfies
∥∥∥∥D−1(1 + PC)−1

[
1
C

]∥∥∥∥
∞
≤ 1

δ
. (9)

For certain classes of infinite dimensional systems this type of uncertainty modeling is very
helpful in finding finite dimensional controllers. See for example [120] for robust controller design
for a thin airfoil where the D∆ term contains an irrational transfer function (the Theodorsen’s
function) which is approximated by a second order rational function, [114].

It turns out that, see e.g. [51, 55, 156], minimizing the left hand side of (9) over all C ∈ C(P )
(for the largest allowable δ), is equivalent to finding the norm of a Hankel operator whose symbol
is [D∗ N∗]. Clearly, (9) is a special case of the two block problem, (6), (with W1 = D−1

o , the
inverse of the outer part of D, and W2 = N−1

o ), and it too reduces to a one block problem.
In summary, several different H∞ control problems can be reduced to the generic form (3),

which is solved via (5). Then the optimal controller is computed using the optimal Q ∈ H∞ in
(2).

3. Optimal solution of the mixed sensitivity minimization problem

In this section we present a closed form solution for the mixed sensitivity problem (6), taken
from [149].

3.1. Examples of Plants Considered. The plants considered in [149] have the coprime fac-
torization in the form

P (s) =
Mn(s)No(s)

Md(s)
, (10)

where Mn is inner, No is outer and Md is finite dimensional and inner. The formula given here
is also valid for certain different classes of infinite dimensional plants (including plants with
infinitely many C+ poles) with some modifications, see [60, 61].

Examples of infinite dimensional plants in the form (10) are as follows.

1. A stable first order system with transport delay:

P1(s) =
e−hs

τps + 1
, h > 0, τp > 0.

Md(s) = 1, Mn(s) = e−hs, No(s) =
1

τps + 1
.

2. An unstable system with transport delay:

P2(s) = e−hs 1
s− a

, h > 0, a > 0,

Md(s) =
s− a

s + a
, Mn(s) = e−hs, No(s) =

1
s + a

.

3. An unstable system with internal time delays:

P3(s) =
s + 3 + 2(s− 1)e−0.4s

s2 + se−0.2s + 5e−0.5s
,

which can be re-written as

P3(s) =
PN (s)
PD(s)

,
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where

PN (s) =
s + 3 + 2(s− 1)e−0.4s

(s + 1)2
,

PD(s) =
s2 + se−0.2s + 5e−0.5s

(s + 1)2
.

It can be shown that PD(s) has only two zeros in C+, these are the unstable poles of the plant,
p1 and p2. On the other hand, PN (s) has infinitely many zeros in C+. Inner-outer factorization
of this plant can be done, [61], by finding p1, p2, and the single C+ zero, z1, of

PN (s) =
2(s + 1) + (s− 3)e−0.4s

(s + 1)2
.

At this point we should mention that there are several tools for finding the zeros of a quasi-
polynomial, see e.g. [36, 37, 38, 131] for the Matlab-based program DDE-BIFTOOL, and also
[29, 91, 113] for other techniques and further references on this topic. Now, the zeros of PD(s)
in C+ are computed as p1,2 ≈ 0.467 ± j1.889, and the zero of PN (s) in C+ is z1 ≈ 0.247. We
define

Md(s) =
(s− p1)(s− p2)
(s + p1)(s + p2)

, M1(s) =
s− z1

s + z1
.

Then, the plant P3 can be written in the form (10) with Md as above and

Mn(s) = M1(s)
s + 3 + 2(s− 1)e−0.4s

2(s + 1) + (s− 3)e−0.4s
,

No(s) =
PN (s)
M1(s)

Md(s)
PD(s)

.

4. A flexible beam: Consider an Euler-Bernoulli beam having free ends with Kelvin-Voigt
damping. Assume that the beam length and all other parameters are normalized to unity,
except the damping constant ε > 0, [88]. Denote the deflection of the beam at time t and
location x along the elastic axis of the beam by w(x, t). Suppose that a transverse force, −u(t),
is applied at one end of the beam, e.g. at x = 1 (see Figure 3).

x=1

force input
u(t)

w(0,t)

x=0

Figure 3. Beam with free ends.

The beam dynamics are given by the following PDE, [16, 87],

∂2w

∂t2
+ ε

∂5w

∂x4∂t
+

∂4w

∂x4
= 0 (11)

with boundary conditions
∂2w

∂x2
(0, t) + ε

∂3w

∂x2∂t
(0, t) = 0,

∂2w

∂x2
(1, t) + ε

∂3w

∂x2∂t
(1, t) = 0,

∂3w

∂x3
(0, t) + ε

∂4w

∂x3∂t
(0, t) = 0,
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∂3w

∂x3
(1, t) + ε

∂4w

∂x3∂t
(1, t) = u(t).

Let the output of the system be the acceleration at x = 0, i.e. yo(t) := ∂2

∂t2
w(0, t) and consider a

low-pass characteristics for the sensor dynamics: H(s) = e−hs/(1 + τs), with h ≥ 0 and τ > 0.
Define the output available for feedback as Y (s) = H(s)Yo(s). Note that w(0, t) is the deflection
at the opposite end of the beam as the applied force −u(t), i.e., even if the sensing delay is zero
the plant is non-minimum phase due to non-collocated actuator and sensor. We will ignore the
actuator dynamics here. Transfer function of the plant (including the sensor dynamics) can be
derived as in [87]: P4(s) := Y (s)

U(s) ,

P4(s) =
s2(sinhβ − sinβ) e−hs

β3(cosβ coshβ − 1)(1 + εs)(1 + τs)
, (12)

where β4 = −s2

(1+εs) .
One can show that P4(s) can be expressed as infinite products of second order terms. These

product representations display its poles and zeros. It also facilitate inner/outer factorizations
which are essential for solving the H∞ optimization problems.

P4(s) =
2e−hs

τs + 1

∞∏

n=1

gn(s), (13)

where

gn(s) =

(
1 + εs− s2

4α4
n

)
(
1 + εs + s2

φ4
n

)

for values of s where this infinite product converges. In [87] it is shown that (13) converge
everywhere in the closed right half plane and can be written as quotients of H∞ functions. We
factor P4 = MnNo, where Mn(s) = e−hsB(s),

No(s) =
2

(τs + 1)

∞∏

n=1

(
1 + s

√
ε2 + 1

α4
n

+ s2

4α4
n

)

(
1 + εs + s2

φ4
n

) , (14)

B(s) =
∞∏

n=1




2α4
n

(
ε +

√
ε2 + 1

α4
n

)
− s

2α4
n

(
ε +

√
ε2 + 1

α4
n

)
+ s


 . (15)

It has been shown that [87, 88], No(s) ∈ H∞ and B(s) ∈ H∞ converge in the closed right
half-plane. The zeros of P4 are at

s = 2α4
n

(
ε±

√
ε2 +

1
α4

n

)
for n = 1, 2, ..., (16)

where
cos(αn) sinh(αn) = sin(αn) cosh(αn), for αn > 0.

Also, P4 has a singularity at −1/ε, and poles at

s =
−φ4

n

2

(
ε±

√
ε2 − 4

φ4
n

)
for n = 1, 2, ...,

where cos(φn) cosh(φn) = 1, for φn > 0.
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3.2. H∞ Optimal Controller. Assume that the weights W1 and W2 are rational and
(W2No), (W2No)−1 ∈ H∞, then optimal H∞ controller for plant (10) can be written as, [149],

Copt = Eγo(s)Md(s)
N−1

o (s)Fγo(s)L(s)
1 + Mn(s)Fγo(s)L(s)

, (17)

where Eγ(s) =
(

W1(−s)W1(s)
γ2 − 1

)
, and for the definition of the other terms, let the right half

plane zeros of Eγ(s) be βi, i = 1, . . . , n1, the right half plane poles of P (s) be αk, k = 1, . . . , `

and that of W1(−s) be ηi i = 1, . . . , n1. Then,

Fγ(s) = Gγ(s)
n1∏

i=1

s− ηi

s + ηi
,

where

G∗
γGγ =

(
1−

(
W ∗

2 W2

γ2
− 1

)
Eγ

)−1

(18)

and Gγ , G−1
γ ∈ H∞, and L(s) = L2(s)

L1(s) , L1 and L2 are polynomials with degrees ≤ (n1 + `− 1)
and they are determined by the following interpolation conditions,

0 = L1(βi) + Mn(βi)Fγ(βi)L2(βi), (19)

0 = L2(−βi) + Mn(βi)Fγ(βi)L1(−βi),

0 = L1(αk) + Mn(αk)Fγ(αk)L2(αk),

0 = L2(−αk) + Mn(αk)Fγ(αk)L1(−αk)

for i = 1, . . . , n1 and k = 1, . . . , `. The optimal performance level, γo, is the largest γ value
such that the spectral factorization (18) can be done and the interpolation conditions (19) are
satisfied for some non-zero L1, L2. A Matlab-based computer program is available for computing
γo and all the functions appearing in (17); it can be downloaded from the author’s web site:
http://www.ee.bilkent.edu.tr/~ozbay/HINFCON.rar

With respect to the above controller formula, first point to note is that the spectral factor-
ization in question is finite dimensional and the order of Fγ is at most the order of W1 plus the
order of W2. Secondly, L(s) is characterized by its 2(n1 + `) coefficients, and the interpolation
conditions (19) can be re-written as

Rγ Φ = 0, (20)

where the entries of the 2(n1 + `) × 1 vector Φ contain the coefficients of L1 and L2, and the
2(n1 + `)×2(n1 + `) matrix Rγ is constructed from Mn(s), F (s) and βi, αk, for i = 1, . . . , n1 and
k = 1, . . . , `. Clearly, explicit computation of Mn(s) is not necessary for the construction of Rγ ;
all we need is its values at βi’s and αk’s. See [42] for more detailed discussion of this point and
further references. Due to symmetry in the interpolation conditions, L(s) term in the optimal
controller satisfies |L(jω)| = 1, but it may or may not be stable. The final observation we make,
probably the most important one from the point of view of “controller implementation,” is that
the controller has internal unstable pole-zero cancelations: the C+ zeros of Eγo and Md are
canceled by the zeros of 1 + Mn(s)Fγo(s)L(s). Since Mn is infinite dimensional, e.g. time delay,
exact cancelation is not always possible. For this reason, these cancelations should be studied
in more detail and a new equivalent structure, which can be implemented in a stable manner,
should be investigated, see [61, 62] for a discussion of this problem within the framework of
general time delay systems.
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Here we illustrate the optimal H∞ controller for P1, with the mixed sensitivity problem
weights

W1(s) =
1 + εs

s + ε
, W2(s) = k(1 + ατps).

In this case the plant is stable, so ` = 0, and W1 is first order, so n1 = 1, and thus n1 +`−1 = 0,
which means that L(s) is just a constant, +1 or −1. We have only one linear equation to form,
and that gives γo. When we let ε → 0, we obtain γo as the largest root of the equation

√
1− (k/γ)2 − kατp/γ2 − sin(h/γ) = 0

in the interval 2h
π ≤ γ < ∞. It can be shown that, [116, 141], the optimal H∞ controller has an

“internal model controller” structure

Copt =
Qopt

1− P (s)Qopt
, Qopt =

Qo

1 + FoQo
,

where

Qo(s) = k
1 + ατps

γos
,

Fo(s) =
1

1 + ατps
F1(s) where F1(s) =

γos(sin(h/γo) + γos cos(h/γo)) + e−hs

1 + (γos)2
. (21)

It should be noted that F1(s) in (21) is the transfer function of a linear time invariant system
whose impulse response is of finite duration, (it is non-zero only on the interval [0 , h]). Thus F1

is a stable system. On the other hand, if F1(s) is implemented as in (21) by using γo and h with
a slight uncertainty in these parameters, then stability of F1 can be lost. So, one must be careful
about the “fragility” of a particular controller implementation in this framework; this is a topic
discussed in detail in the literature [79]. If F1(s) is implemented by taking a stable approximation
(for example, approximation of its impulse response by another finite impulse response filter),
then this will lead to a small stable perturbation in the numerator and denominator coprime
factors of the controller, which will not cause any fragility problems as shown in [52, 95, 125].

4. Conclusions

The purpose of this paper was to introduce the readership of this mathematics journal to a
specific control engineering problem.

There are also very interesting applications of the theory given here to data flow control
in computer communication networks. Interested readers are referred to [106] [21, 69, 96],
[13, 15, 136], [126], [127], [152], for related issues and technical details related to this particular
application.

Another useful application of the theory presented here is in the suppression of cavity flow
oscillations in aerodynamics. Typically, this is an application involving nonlinear infinite dimen-
sional models, [1, 4, 18, 73, 77, 145]. Nevertheless, using simplified linear models H∞ controllers
can be designed for performance improvement, see e.g. [162, 163, 166, 167] and their references.
In particular [166] shows that in this application the plant and the weights are infinite dimen-
sional, but by exploiting the special structure of the plant and how the weights are defined, it
is possible to find a suboptimal H∞ controller suppressing cavity flow oscillations.

Recently, in [117] it has been shown that the set of equations (20) can be further simplified
and the size of the γ-dependent matrix whose singularity gives the optimum performance level
can be reduced to n1 × n1, where n1 is the order of the weight W1(s). For detailed discussion
the simplified formulae see [117].



HITAY ÖZBAY: AN OPERATOR THEORETIC APPROACH TO ROBUST... 13

References
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HITAY ÖZBAY: AN OPERATOR THEORETIC APPROACH TO ROBUST... 15

[53] Georgiou, T.T., Smith, M.C., (1992), Robust stabilization in the gap metric: controller design for distributed

plants, IEEE Transactions on Automatic Control, 37, pp.1133-1143.

[54] Glad, T., Ljung, L., (2000), Control Theory: Multivariable and Nonlinear Methods, Taylor and Francis,

London.

[55] Glover, K., McFarlane, D., (1989), Robust stabilization of normalized coprime factor plant descriptions with

H∞ bounded uncertainty, IEEE Transactions on Automatic Control, 34, pp.821-830.

[56] Green, M., Limebeer, D.J.N., (1995), Linear Robust Control, Prentice Hall, Englewood Cliffs.

[57] Gu, C., (1992), Eliminating the genericity conditions in the skew Toeplitz operator algorithm for H∞ opti-

mization, SIAM J. Math. Anal., 23, pp.1623-1636.

[58] Gu, C., Toker, O., Özbay, H., (1996), On the two block H∞ problem for a class of unstable distributed

systems, Linear Algebra and its Applications, 234, pp.227-244.

[59] Gu, K., Kharitonov, V.L., Chen,J., (2003), Stability of Time-Delay Systems, Birkhäuser, Boston.
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[115] Özbay, H., (2000), Introduction to Feedback Control Theory, CRC Press LLC, Boca Raton, FL.
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[166] Yuan, X., Efe, M.Ö., Özbay, H., (2004), On Delay-Based Linear Models and Robust Control of Cavity

Flows, in Advances in Time-Delay Systems, S. Niculescu and K. Gu Eds., Springer-Verlag, Lecture Notes in

Computational Science and Engineering, 38, pp.287-298.

[167] Yuan, X., Caraballo, E., Little, J., Debiasi, M., Serrani, A. , Özbay, H., Myatt, J.H., Samimy, M., (2009),
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[170] Zeren, M., Özbay, H., (1998), Comments on ‘Solutions to the combined sensitivity and complementary

sensitivity problem in control systems’, IEEE Transactions on Automatic Control, 43(5), p.724.

[171] Zhong, Q-C., (2006), Robust Control of Time-Delay Systems, Springer- Verlag, Berlin.

[172] Zhou, K., Doyle, J.C., Glover, K., (1996), Robust and Optimal Control, Prentice Hall, Upper Saddle River,

NJ.

[173] Zhou, K., Doyle, J.C., (1998), Essentials of Robust Control, Prentice Hall, Upper Saddle River, NJ, 411p.

[174] Zhou, K., Khargonekar, P.P., (1987), On the weighted sensitivity minimization problem for delay systems,

Systems and Control Letters, 8(4), pp.307-312.

[175] Zwart, H., (2004), Transfer functions for infinite-dimensional systems, Systems and Control Letters, 52(3-4),

pp.247-255.

Hitay Özbay is a Professor of Electrical and Elec-

tronics Engineering at Bilkent University, (Ankara,

Turkey). He received the B.Sc. degree in Electrical

Engineering from Middle East Technical University

(Ankara, Turkey) in 1985, the M.Eng degree in Elec-

trical Engineering from McGill University (Montreal,

Canada) in 1987, and the Ph.D. degree in Control Sci-

ences and Dynamical Systems from the University of

Minnesota, (Minneapolis, USA) in 1989. Dr. Özbay
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